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whoami

• Soon-to-be graduate of Politehnica Univerity of 
Bucharest

• Apache Mahout committer

• This work is my senior project

• Contact me at

• dfilimon@apache.org

• dangeorge.filimon@gmail.com
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Agenda

• Data

• Clustering

• k-means

• Improvements

• Large scale

• k-means as a map-reduce

• streaming k-means

• MapReduce & Storm

• Results

Full version at http://goo.gl/n3n8S
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Data

• Real-valued vectors (or anything that can be 
encoded as such)

• Think of rows in a database table

• Can be: documents, web pages, images, videos, 
users, DNA
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The problem
Group n d-dimensional datapoints into k disjoint 
sets to minimize
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Xi is the ith cluster

ci is the centroid of the ith cluster

xij is the jth point from the ith cluster

dist(x,y) = ||x� y||2
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k-means

points to cluster
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k-means

initial centroids
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k-means

first iteration assignment
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k-means

adjusted centroids
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k-means

second iteration assignment
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k-means

adjusted centroids
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Details

• Quality

• How to initialize the centroids

• When to stop iterating

• How to deal with outliers

• Speed

• Complexity of cluster assignment
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Quality?

• Clustering is in the eye of the beholder

• Total clustering cost and:

• compact

• well-separated

• Dunn Index, Davies-Bouldin Index, etc.
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Centroid initialization

• Important for quick 
convergence and quality

• Randomly select k points as 
centroids

• Clustering fails if two 
centroids are in the same 
cluster

• k-means++ addresses this

2 seeds here

1 seed here
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Outliers

• Real data is messy

• Outliers can affect 
k-means centroids
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Closest cluster: reducing k

• Avoid computing the distance from a point to every 
cluster

• Random Projections

• projection search

• locality-sensitive hashing search
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Random Projections
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• Unit length vectors with normally distributed 
components
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Closest cluster: reducing d

• Principal Component Analysis

• compute SVD

• Random Projections

• multiply data by projection matrix
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k-means as a MapReduce

• Can’t split k-means loop directly

• Must express a single k-means step as a MapReduce
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Now for something 
completely different

• Fast and Accurate k-means For Large Datasets
M. Schindler, A. Wong, A. Meyerson

• http://books.nips.cc/papers/files/nips24/NIPS2011_1271.pdf

• Attempt to build a “sketch” of the data in one pass

• O(k log n) intermediate clusters

• Can fit into memory

• Ball k-means on the sketch for k final clusters
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streaming k-means

first point
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streaming k-means

becomes centroid
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streaming k-means

second point

far away
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streaming k-means

becomes centroid

far away
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streaming k-means

third point

close
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streaming k-means

centroid is updated
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streaming k-means

close
but becomes a 

new centroid
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streaming k-means
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streaming k-means
• for each point p, with weight w

• find the closest centroid to p, call it c and let d be the 
distance between p and c

• if an event with probability proportional to
d * w / distanceCutoff occurs

• create a new cluster with p as its centroid

• else, merge p into c

• if there are too many clusters, increase distanceCutoff 
and cluster recursively
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The big picture
MapReduce

• Can cluster all the points with just 1 MapReduce:

• m mappers run streaming k-means

• 1 reducer runs ball k-means to get k clusters
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The big picture
Storm

• Storm

• streaming k-means bolt

• Release the sketch when notified (e.g. tick tuples)

• Trident

• streaming k-means partition aggregator

• ball k-means aggregator
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Results
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Quality
• Compared the quality on various small-medium UCI data 

sets

• iris, seeds, movement, control, power

• Computed the following quality measures:

• Dunn Index (higher is better)

• Davies-Bouldin Index (lower is better)

• Adjusted Rand Index (higher is better)

• Total cost (lower is better)
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iris randplot-2
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iris randplot-4
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seeds compareplot
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movement compareplot
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control randplot-3
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power allplot
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power compareplot
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Overall (avg. 5 runs)
Dataset Clustering Avg. Dunn Avg. DB Avg. Cost Avg. ARI

iris
km 9.161 0.265 124.146

0.905iris
bskm 6.454 0.336 117.859

0.905

seeds
km 7.432 0.453 909.875

0.980seeds
bskm 6.886 0.505 916.511

0.980

movement
km 0.457 1.843 336.456

0.650movement
bskm 0.436 2.003 347.078

0.650

control
km 0.553 1.700 1014313

0.630control
bskm 0.753 1.434 1004917

0.630

power
km 0.107 1.380 73339083

0.605power
bskm 1.953 1.080 54422758

0.605
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Speed (Threaded)
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Speed (MapReduce)
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iteration times comparable

~2.4x faster
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Speed (MapReduce)

0
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1000 clusters 1 iteration

KMeans StreamingKMeans

benefits from 
approximate

nearest-neighbor 
search

~8x faster
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Code

• Now available in Apache Mahout trunk

• Prototype for Storm
http://github.com/dfilimon/streaming-storm

Clustering algorithms BallKMeans
StreamingKMeans

Fast nearest-neighbor search ProjectionSearch

Quality metrics ClusteringUtils

MapReduce classes StreamingKMeansMapper
StreamingKMeansReducer

Storm classes StreamingKMeansBolt
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Thank you!
Questions?

dfilimon@apache.org
dangeorge.filimon@gmail.com
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