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Event Data
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Event Data is Huge: Volume

● The problem: You easily get A LOT OF DATA!
– 100 events per second

– 360k events per hour

– 8.6M events per day

– 260M events per month

– 3.2B events per year
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Event Data is Huge: Diversity

● Potentially large spaces:
– distinct words: >100k

– IP addresses: >100M

– users in a social network: >10M

http://www.flickr.com/photos/arenamontanus/269158554/http://wordle.net
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To Scale Or Not To Scale?
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Stream Mining to the rescue

● Stream mining algorithms:
– answer “stream queries” with finite resources

● Typical examples:
– how often does an item appear in a stream?

– how many distinct elements are in the stream?

– what are the top-k most frequent items?

Continuous Stream of Data

Bounded Resource
Analyzer Stream Queries
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The Trade-Off

ExactFast

Big Data

Stream Mining Map Reduce 
and friends

First seen here: http://www.slideshare.net/acunu/realtime-analytics-with-apache-cassandra 

http://www.slideshare.net/acunu/realtime-analytics-with-apache-cassandra
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Heavy Hitters (a.k.a. Top-k)

● Count activities over large item sets (millions, 
even more, e.g. IP addresses, Twitter users)

● Interested in most active elements only.

Metwally, Agrawal, Abbadi, Efficient computation of Frequent and Top-k Elements in Data Streams, Internation Conference 
on Database Theory, 2005
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Heavy Hitters over Time-Window

Time

DB

● Keep quite a big log (a 
month?)

● Constant write/erase in 
database

● Alternative: Exponential 
decay
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Exponential Decay

● Instead of a fixed window, use exponential 
decay

● The beauty: updates are recursive
halftime

score

timestamp

time shift term
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Exponential Decay

● Collect stats by a table of expdecay counters
counters[item]    # counters

ts[item]      # last timestamp

● update(C, item, timestamp, count) – update counts
C.counters[item] = count + 
       weight(timestamp, C.ts[item]) * C.counters[item]

C.ts[item] = timestamp
C.lastupdate = timestamp

● score(C, item) – return score
return weight(C.lastupdate, C.ts[item]) 
         * C.counters[item]
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Count-Min Sketches

● Summarize histograms over large feature sets
● Like bloom filters, but better

● Query: Take minimum over all hash functions

0 0 3 0

1 1 0 2

0 2 0 0

0 3 5 2

0 5 3 2

2 4 5 0

1 3 7 3

0 2 0 8

m bins

n different
hash functions

Updates for new entry
Query result: 1

G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch and its applications.  
LATIN 2004, J. Algorithm 55(1): 58-75 (2005) . 
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Wait a minute? Only Counting?

● Well, getting the top most active items is 
already useful.
– Web analytics, Users, Trending Topics

● Counting is statistics!
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Counting is Statistics

● Empirical mean:

● Correlations:

● Principal Component Analysis:
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Example 1: Least Squares 
Regression

d

d

with entries

this could be huge!

d x d is probably ok

Idea: Batch method like least squares on recent portion 
of the data.

But: It's just a sum!
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Least Squares Regression

● Need to compute
● For each           do

–

–

● Then, reconstruct 
–

As a reminder:
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Example 2: Maximum-Likelihood

● Estimate probabilistic models

● But wait, how do I “1/n” with randomly spaced 
events?

based on

which is slightly 
biased, but 
simpler 
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Example 3: Outlier detection

● Once you have a model, you can compute 
p-values (based on recent time frames!)
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Example 4: Clustering
● Online clustering

– For each data point:
● Map to closest centroid (  compute distances)⇒
● Update centroid

– count-min sketches to represent sum over all 
vectors in a class

Aggarwal, A Framework for Clustering Massive-Domain Data Streams, IEEE International Conference on Data Engineering , 2009

0 0 3 0
1 1 0 2

0 2 0 0
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Example 5: TF-IDF

● estimate word – document frequencies

● for each word: update(word, t, 1.0)
● for each document: update(“#docs”, t, 1.0)
● query: score(word) / score(“#docs”)
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Example 6: Classification with Naïve 
Bayes
● Naive Bayes is also just counting, right?

class priors

Multinomnial naïve Bayes

Priors

Total number of words in class

Number of times word   appears in classfrequency of word   in document 



 

Mikio Braun   Beyond Scaling: Real-Time Event Processing with Stream Mining   Berlin Buzzwords 2013   © by MB

Example 6: Classification with Naive 
Bayes

ICML 2003



 

Mikio Braun   Beyond Scaling: Real-Time Event Processing with Stream Mining   Berlin Buzzwords 2013   © by MB

Example 6: Classification with Naive 
Bayes
● 7 Steps to improve NB:

– transform TF to log( . + 1)

– IDF-style normalization

– square length normalization

– use complement probability

– another log

– normalize those weights again

– Predict linearly using those weights
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What about non-parametric 
methods and Kernel Methods?
● Problem here, no real accumulation of information 

in statistics, e.g. SVMs

● Could still use streamdrill to extract a representative 
subset.

sum over all      elements!
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Streamdrill

● Heavy Hitters counting + exponential decay
● Instant counts & top-k results over time 

windows.
● Indices!
● Snapshots for historical analysis
● Beta demo available at http://streamdrill.com, 

launch imminent

http://streamdrill.com/
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Architecture Overview
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Example: Twitter Stock Analysis

http://play.streamdrill.com/vis/

http://play.streamdrill.com/vis/
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Example: Twitter Stock Analysis
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Example: Twitter Stock Analysis
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Summary

● Doesn't always have to be scaling!
● Stream mining: Approximate results with 

finite resources.
● streamdrill: stream analysis engine
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