
Query Suggestions with
Lucene

simonw & rmuir

Who we are...

who: Simon Willnauer / Robert Muir

what: Lucene Core Committers & PMC Members
mail: simonw@apache.org / rmuir@apache.org

twitter: @s1m0nw / @rcmuir

work: /

S/R

Agenda

● What are you talking about?

● Real World Usecases...

● What Lucene can do for you?

● What's in the pipeline?

S

What are you talking about?

S

Suggestions, what's the deal?

● Performance - 1 Req/Keystroke
● serve in less than 5 ms
● User experience is super important
● Be super fast!

S

Fighting the speed of light!

● Latency matters!
● consider network round-trips

○ US to Europe return ~ 10000km
■ lower bound is ~ 67 ms
■ double is realistic ~ 130 ms

● Deploy world wide
● you need 50 frames / sec

 S

Suggestion,
what's the deal?

● Suggestion Quality
○ Ranking / Weight
○ Filter trash

■ "b" → "belrin buzwzords"
○ What makes a "string" a good suggestion?

● Fuzziness / Analysis / Synonyms
○ "who" → "The Who"
○ "captain us" → "Captain America"
○ "foo gight" → "Foo Fighters"

S

Suggest As Navigation

UseCase SoundCloud

S

The response....

S

Some interesting facts.

● Suggests QPS ~ 3x more than search traffic
○ Suggest as Navigation offloads traffic from search

infrastructure.
○ Navigation takes you directly to the top result

● Suggestions improve Search Precision
○ make people search the right thing

● Good Suggest Weights make the difference
○ details omitted ;)

● Benchmarks showed it can do ~ 10k QPS on
a single CPU

S

Usecase Geo-Prefix Suggestion

● Location-sensitive suggestions
● Implementation: WFSTSuggester with custom weights
● Prepend geohashes at varying precisions (city, county, ...)
● See "Building Query Auto-Completion Systems with Lucene 4.0"

R

● Suggest: Kulturbrauerei
○ Lat/Lon: 52.53,13.41
○ GeoHash: u33dchqy (http://geohash.org/u33dchqy)

Suggester:
● u33dchqy_kulturbrauerei, berlin, germany
● u33dch_kulturbrauerei, berlin, germany
● u33d_kulturbrauerei, berlin, germany

Query:
● u33d_{user_query} → u33d_ku

Example Geo-Prefix

R

http://geohash.org/u33dchqy)

What Lucene can do for you!

● Top-K Most Relevant (Ranked results)
● Text Analysis (Synonyms / Stopwords)

○ "berlin deu" → "Berlin, Germany"
● Spelling Correction (Typos)
● Write-Once & Read-Only

○ Entirely In-Memory (byte[]-serialized)
○ optimal for concurrency

R

FST? WTF?

-- "World's biggest FST": http://aaron.blog.archive.org/2013/05/29/worlds-biggest-fst/

"With FSTs we are able to get a condensed data structure
which is about 50% larger than the same data gzip
compressed, and can be searched at a rate of ~275,000
queries/sec."

R

http://aaron.blog.archive.org/2013/05/29/worlds-biggest-fst/

Suggestion-fest

R

FSTSuggester: Apr 2011
Input Weight

beer 0xfe

bar 0xff

berlin 0xfe

● Data structure: FSA
● 8-bit weights
● prefix input with weight
● lookup input 256 times

R

WFSTSuggester: Feb. 2012
Input Weight

wacky 1

wealthy 3

waffle 4

weaver 7

weather 10

● Data structure: wFSA
● 32-bit weights
● min-plus algebra
● n-shortest paths search

R

● Data structure: wFST
● output is original (surface)
● input from analysis chain
● stemming, stopwords, ...

AnalyzingSuggester: Oct. 2012
Surface Analyzed Weight

北海道 hokkaidō 1

話した hanashi-ta 2

北海

話

R

FuzzySuggester: Nov 2012

S

FuzzySuggester: Nov 2012

● Based on Levenshtein Automata
○ used for Fuzzy Search in Lucene

● Supports all features of AnalyzingSuggester
● Both Query and Index are represented as a

Finite State Automaton
● Automaton / FST Intersection

○ find prefixes
● Wait... wat? Levenshtein Automata?

S

WTF, Levenshtein Automata??

S

Speed?

● 10x slower than analyzing suggester
● Mike Mccandless said:

○ "10x slower than crazy fast is still crazy fast..."
○ we are doing 10k / QPS on a single CPU

● Why are suggesters fast?
○ it all depends on the benchmark :)

What is in the pipeline?

Infix suggestions
● Allow fuzziness in word order
● Complicates ranking!

Predictive suggestions
● Only predict the next word
● Good for full-text: attacks long-tail
● Bad for things like products.

R

Recommendations

● Run Suggesters in a dedicated service
○ request patterns are different to search

● Invest time in your weights / scores
○ a simple frequency measurement might not be

enough
● Prune your data

○ reduces FST build times
○ reduces suggestions to relevant suggestions

● "Detect Bullshit" ™
○ be careful if you suggest user-generated input

● Simplify your query Analyzer

S

Questions?

R/S

