
1

Testing Lucene and Solr with various JVMs:

Bugs, Bugs, Bugs

Uwe Schindler
Apache Lucene Committer & PMC Member

uschindler@apache.org

http://www.thetaphi.de, http://blog.thetaphi.de

@ThetaPh1

SD DataSolutions GmbH, Wätjenstr. 49, 28213 Bremen, Germany

Tel: +49 421 40889785-0, http://www.sd-datasolutions.de

mailto:uschindler@apache.org
http://www.thetaphi.de/
http://blog.thetaphi.de/
http://www.sd-datasolutions.de/
http://www.sd-datasolutions.de/
http://www.sd-datasolutions.de/
http://www.sd-datasolutions.de/
http://www.sd-datasolutions.de/

My Background

• Committer and PMC member of Apache Lucene and Solr - main

focus is on development of Lucene Java.

• Implemented fast numerical search and maintaining the new

attribute-based text analysis API. Well known as Generics and

Sophisticated Backwards Compatibility Policeman.

• Working as consultant and software architect for SD

DataSolutions GmbH in Bremen, Germany. The main task is

maintaining PANGAEA (Publishing Network for Geoscientific &

Environmental Data) where I implemented the portal's geo-spatial

retrieval functions with Apache Lucene Core.

• Talks about Lucene at various international conferences like the

previous Berlin Buzzwords, ApacheCon EU/NA, Lucene Eurocon,

Lucene Revolution, and various local meetups.

Agenda

• Some history

• The famous bugs 

• How to debug hotspot problems

• Setting up Jenkins to test your software

with lots of virtual machine vendors

• Bugs, Bugs, Bugs

3

SOME HISTORY…

What happened?

4

Chronology

• Java 7 Release Candidate released July 6,

2011 as build 147 (compiled and signed on June

27, 2011 – also the release date of OpenJDK 7

b147)

• Saturday, July 23, 2011:

– downloaded it to do some testing with Lucene trunk,

core tests ran fine on my Windows 7 x64 box

– Installation of FreeBSD package on Apache’s Jenkins

“Lucene” slave => heavy testing started: various

crashes/failures:

5

Issues found

• Jenkins revealed SIGSEGV bug in Porter

stemmer (found when number of iterations were

raised) [LUCENE-3335]

• New Lucene 3.4 facetting test sometimes

produced corrupt indexes [LUCENE-3346]

6

https://issues.apache.org/jira/browse/LUCENE-3335
https://issues.apache.org/jira/browse/LUCENE-3335
https://issues.apache.org/jira/browse/LUCENE-3335
https://issues.apache.org/jira/browse/LUCENE-3346
https://issues.apache.org/jira/browse/LUCENE-3346
https://issues.apache.org/jira/browse/LUCENE-3346

WARNING !!!

• Also Java 6 was affected!
(some time after the only stable version 1.6.0_18)

• Optimizations disabled by default, so:

7

Don’t use -XX:+AggressiveOpts

if you want your loops behave correctly!

//upload.wikimedia.org/wikipedia/commons/2/24/Warning_icon.svg
//upload.wikimedia.org/wikipedia/commons/2/24/Warning_icon.svg

Chronology

• Thursday, July 28, 2011:
– Oracle released JDK 7 to public

– Package was identical to release candidate (Windows

EXE signature dated June 27, 2011)

8

mailto:announce@apache.org

Chronology

• Thursday, July 28, 2011:
– Oracle released JDK 7 to public

– Package was identical to release candidate (Windows

EXE signature dated June 27, 2011)

8

mailto:announce@apache.org

Chronology

• Thursday, July 28, 2011:
– Oracle released JDK 7 to public

– Package was identical to release candidate (Windows

EXE signature dated June 27, 2011)

• Apache Lucene PMC decided to warn

users on web page and

announce@apache.org mailing list

8

mailto:announce@apache.org

Chronology:

Friday, July 29, 2011

9

Chronology:

Friday, July 29, 2011

9

Chronology:

Friday, July 29, 2011

9

Chronology:

Friday, July 29, 2011

9

Chronology:

Friday, July 29, 2011

9

Chronology:

Friday, July 29, 2011

9

Further analysis the week after

10

Further analysis the week after

10

Further analysis the week after

10

Further analysis the week after

10

Further analysis the week after

10

Further analysis the week after

10

Further analysis the week after

10

Further analysis the week after

10

THE PORTER STEMMER

SIGSEGV BUG

Java 7 Crashes Eclipse…

11

What’s wrong with these methods?

12

Conclusion: Porter Stemmer Bug

• Less serious bug as your virtual machine

simply crashes. You won’t use it!

• Oracle made bug report “serious”, as this

affects their software, reproducible to

everyone.

• Can be prevented by JVM option:
-XX:-UseLoopPredicate

13

THE VINT BUG

Loop Unwinding

14

What’s wrong with this method?

15

What’s wrong with this method?

15

Conclusion: Vint Bug

• Serious data corruption: Some methods using loops

silently return wrong results!

• Bug already existed in Java 6

– appeared some time after 1.6.0_18, enabled by default

– is prevented since Lucene 3.1 by manual loop

unwinding (helps only in Java 6)

• Cannot easily be reproduced, Oracle assigned

“medium” bug priority – was never fixed in Java 6.

• Problems got worse with Java 7, only safe way to

prevent is to disable loop unwinding completely, but

that makes Lucene very slow.

16

Conclusion: Vint Bug

• Serious data corruption: Some methods using loops

silently return wrong results!

• Bug already existed in Java 6

– appeared some time after 1.6.0_18, enabled by default

– is prevented since Lucene 3.1 by manual loop

unwinding (helps only in Java 6)

• Cannot easily be reproduced, Oracle assigned

“medium” bug priority – was never fixed in Java 6.

• Problems got worse with Java 7, only safe way to

prevent is to disable loop unwinding completely, but

that makes Lucene very slow.

16

HOW TO DEBUG HOTSPOT

PROBLEMS

Hands-On

17

First…

• Fetch some beer!

• Tell your girlfriend that you will not come to

bed!

• Forget about Eclipse & Co! We need a

command line and our source code…

18

Hardcore:

Debugging without Debugger

• Open hs_err file and watch for stack trace.
(if your JVM crashed like in Porter stemmer)

• Otherwise: disable Hotspot to verify that it’s

not a logic error! (-Xint / -Xbatch)

• Start to dig around by adding
System.out.println, assertions,...
Please note: You cannot use a debugger!!!

19

Hardcore:

Debugging without Debugger

• Open hs_err file and watch for stack trace.
(if your JVM crashed like in Porter stemmer)

• Otherwise: disable Hotspot to verify that it’s

not a logic error! (-Xint / -Xbatch)

• Start to dig around by adding
System.out.println, assertions,...
Please note: You cannot use a debugger!!!

19

Digging…

• If you found a method that works incorrectly,

disable Hotspot optimizations for only that one:
-XX:CompileCommand=exclude,your/package/Class,method

– If program works now, you found a workaround!

– But this may not be the root cause - does not help at all!

• Step down the call hierarchy and replace

exclusion by methods called from this one.

20

Take action!

Open a bug report at Oracle!

Inform

hotspot-compiler-dev@openjdk.java.net

mailing list.

21

mailto:hotspot-compiler-dev@openjdk.java.net
mailto:hotspot-compiler-dev@openjdk.java.net
mailto:hotspot-compiler-dev@openjdk.java.net
mailto:hotspot-compiler-dev@openjdk.java.net
mailto:hotspot-compiler-dev@openjdk.java.net

TESTING SOFTWARE ON

VARIOUS JVM VENDORS

Setting up Jenkins

22

Randomization everywhere

• Apache Lucene & Solr use randomization while

testing:

– Random codec settings

– Random Lucene directory implementation

– Random locales, default charsets,…

– Random indexing data

23

Randomization everywhere

• Apache Lucene & Solr use randomization while

testing:

– Random codec settings

– Random Lucene directory implementation

– Random locales, default charsets,…

– Random indexing data

• Reproducible:

– Every test gets an initial random seed

– Printed on test execution & included in stack traces

23

Missing parts

• JVM randomization
– Oracle JDK 6 / 7

– IBM J9 6 / 7

– Oracle JRockit 6

24

Missing parts

• JVM randomization
– Oracle JDK 6 / 7

– IBM J9 6 / 7

– Oracle JRockit 6

• JVM settings randomization
– Garbage collector

– Bitness: 32 / 64 bits

– Server / Client VM

– Compressed OOPs (ordinary object pointer)

24

Missing parts

• JVM randomization
– Oracle JDK 6 / 7

– IBM J9 6 / 7

– Oracle JRockit 6

• JVM settings randomization
– Garbage collector

– Bitness: 32 / 64 bits

– Server / Client VM

– Compressed OOPs (ordinary object pointer)

• Platform
– Linux, Windows, MacOS X, FreeBSD,…

24

Possibilities

• Define each Jenkins job with a different JVM:

– Duplicates

– Hard to maintain

– Multiplied by additional JVM settings like GC,

server/client, or OOP size

25

Possibilities

• Define each Jenkins job with a different JVM:

– Duplicates

– Hard to maintain

– Multiplied by additional JVM settings like GC,

server/client, or OOP size

• Make Jenkins server set build / environment

variables with a (pseudo-)randomization script:

– $JAVA_HOME → passed to Apache Ant

– $TEST_JVM_ARGS → passed to test runner

25

Plugins needed

• Environment Injector Plugin

– Executes Groovy script to do the actual work

– Sets some build environment variables:
$JAVA_HOME, $TEST_JVM_ARGS, $JAVA_DESC

26

Plugins needed

• Environment Injector Plugin

– Executes Groovy script to do the actual work

– Sets some build environment variables:
$JAVA_HOME, $TEST_JVM_ARGS, $JAVA_DESC

• Jenkins Description Setter Plugin / Jenkins Email

Extension Plugin

– Add JVM details / settings to build description and e-mails

26

Global Jenkins settings

• Extra JDK config in Jenkins (called “random”):

– pointing to dummy directory (we can use the base

directory containing all our JDKs)

– Assigned to every job that needs a randomly choosen

virtual machine

27

28

28

The warning displayed by Jenkins doesn’t matter!

Job Config

• Standard free style build with plugins activated

– Calls Groovy script file with main logic (sets
$JAVA_HOME randomly,…)

– List of JVM options as a „config file“

– Job‘s JDK version set to „random“

– Apache Ant configuration automatically gets
$JAVA_HOME and test runner gets extra options via

build properties

29

Job Config

• Standard free style build with plugins activated

– Calls Groovy script file with main logic (sets
$JAVA_HOME randomly,…)

– List of JVM options as a „config file“

– Job‘s JDK version set to „random“

– Apache Ant configuration automatically gets
$JAVA_HOME and test runner gets extra options via

build properties

• Should work with Maven builds, too!

29

30

31

32

33

34

34

BUGS FOUND

Results

35

Oracle (Hotspot) JVM

• Various issues with JIT compilation around all

OpenJDK / Oracle JDK versions:

– Miscompiled loops

– Segmentation faults

– System.nanotime() brokenness on MacOSX

– Double free()

• Lucene bugs with memory allocations if

compressed oops are disabled on 64bit JVMs

– happens only with large heaps > 32 GB

36

Java 8 prereleases

• G1 garbage collector deadlock due to marking stack

overflow (fixed)

• Compile failures with –source 1.7 related to default

interface methods (“isAnnotationPresent”) (fixed)

• Javadoc bugs

– new doclint feature did not work (fixed)

– doc-files folders were not copied (fixed)

37

Java 8 prereleases

• G1 garbage collector deadlock due to marking stack

overflow (fixed)

• Compile failures with –source 1.7 related to default

interface methods (“isAnnotationPresent”) (fixed)

• Javadoc bugs

– new doclint feature did not work (fixed)

– doc-files folders were not copied (fixed)

• Solr test bugs with cool new Nashorn Javascript engine

(fixed in Solr tests)

37

Oracle JRockit
• TestPostingsOffsets#testBackwardsOffsets

fails in assertion in core Lucene code

– JVM “ignores” an if-statement

– IndexWriter later hits assertion

• No fix available by Oracle

– Impossible to open a bug report without support contract!

– JRockit seems unsupported

– No Java 7 version available anymore => discontinued

• Workaround: -XnoOpt

– Slowdown => better use supported Oracle Java 7

38

Oracle JRockit
• TestPostingsOffsets#testBackwardsOffsets

fails in assertion in core Lucene code

– JVM “ignores” an if-statement

– IndexWriter later hits assertion

• No fix available by Oracle

– Impossible to open a bug report without support contract!

– JRockit seems unsupported

– No Java 7 version available anymore => discontinued

• Workaround: -XnoOpt

– Slowdown => better use supported Oracle Java 7

Don’t use JRockit or WebLogic App Server

38

//upload.wikimedia.org/wikipedia/commons/2/24/Warning_icon.svg

IBM J9
• GrowableWriter#ensureCapacity() fails in assertion in

core Lucene code

– FST#pack() passes wrong argument

• Cause completely unknown!

• Hard to debug

– Happens with JIT, AOT and without any optimizer

– Only happens if test is executed in whole test suite

• Workaround:
-Xjit:exclude={org/apache/lucene/util/fst/FST.pack(IIF)Lorg/apache/lucene/util/fst/FST;}

39

IBM J9
• GrowableWriter#ensureCapacity() fails in assertion in

core Lucene code

– FST#pack() passes wrong argument

• Cause completely unknown!

• Hard to debug

– Happens with JIT, AOT and without any optimizer

– Only happens if test is executed in whole test suite

• Workaround:
-Xjit:exclude={org/apache/lucene/util/fst/FST.pack(IIF)Lorg/apache/lucene/util/fst/FST;}

Don’t use IBM J9

(Warning: Installed on SUSE Enterprise Linux by default)

39

//upload.wikimedia.org/wikipedia/commons/2/24/Warning_icon.svg

How about OpenJDK?

• Version numbers are inconsistent to official Oracle Java!

• Ubuntu 12 still installs OpenJDK 7b147, but patched!

• OpenJDK 6 is very different to Oracle JDK 6:

– Forked from early Java 7!

– Not all patches applied: e.g., ReferenceQueue#poll() does not

use double checked locking

40

How about OpenJDK?

• Version numbers are inconsistent to official Oracle Java!

• Ubuntu 12 still installs OpenJDK 7b147, but patched!

• OpenJDK 6 is very different to Oracle JDK 6:

– Forked from early Java 7!

– Not all patches applied: e.g., ReferenceQueue#poll() does not

use double checked locking

You may use OpenJDK 7

(if you understand version numbers and their relation to

Oracle’s update packages)

40

How about OpenJDK?

• Version numbers are inconsistent to official Oracle Java!

• Ubuntu 12 still installs OpenJDK 7b147, but patched!

• OpenJDK 6 is very different to Oracle JDK 6:

– Forked from early Java 7!

– Not all patches applied: e.g., ReferenceQueue#poll() does not

use double checked locking

You may use OpenJDK 7

(if you understand version numbers and their relation to

Oracle’s update packages)

Don’t use OpenJDK 6

40

//upload.wikimedia.org/wikipedia/commons/2/24/Warning_icon.svg
//upload.wikimedia.org/wikipedia/commons/2/24/Warning_icon.svg

41

Inform yourself about further bugs:
http://wiki.apache.org/lucene-java/JavaBugs

http://wiki.apache.org/lucene-java/JavaBugs
http://wiki.apache.org/lucene-java/JavaBugs
http://wiki.apache.org/lucene-java/JavaBugs

