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My Background 

• Committer and PMC member of Apache Lucene and Solr - main 

focus is on development of Lucene Java. 

• Implemented fast numerical search and maintaining the new 

attribute-based text analysis API. Well known as Generics and 

Sophisticated Backwards Compatibility Policeman. 

• Working as consultant and software architect for SD 

DataSolutions GmbH in Bremen, Germany. The main task is 

maintaining PANGAEA (Publishing Network for Geoscientific & 

Environmental Data) where I implemented the portal's geo-spatial 

retrieval functions with Apache Lucene Core. 

• Talks about Lucene at various international conferences like the 

previous Berlin Buzzwords, ApacheCon EU/NA, Lucene Eurocon, 

Lucene Revolution, and various local meetups. 



Agenda 

• Some history 

• The famous bugs  

• How to debug hotspot problems 

• Setting up Jenkins to test your software 

with lots of virtual machine vendors 

• Bugs, Bugs, Bugs 
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SOME HISTORY… 

What happened? 
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Chronology 

• Java 7 Release Candidate released July 6, 

2011 as build 147 (compiled and signed on June 

27, 2011 – also the release date of OpenJDK 7 

b147) 

• Saturday, July 23, 2011: 

– downloaded it to do some testing with Lucene trunk, 

core tests ran fine on my Windows 7 x64 box 

– Installation of FreeBSD package on Apache’s Jenkins 

“Lucene” slave => heavy testing started: various 

crashes/failures: 
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Issues found 

• Jenkins revealed SIGSEGV bug in Porter 

stemmer (found when number of iterations were 

raised) [LUCENE-3335] 

• New Lucene 3.4 facetting test sometimes 

produced corrupt indexes [LUCENE-3346] 
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WARNING !!! 

• Also Java 6 was affected! 
(some time after the only stable version 1.6.0_18) 

• Optimizations disabled by default, so: 
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Don’t use -XX:+AggressiveOpts 

if you want your loops behave correctly! 
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Chronology 

• Thursday, July 28, 2011: 
– Oracle released JDK 7 to public 

– Package was identical to release candidate (Windows 

EXE signature dated June 27, 2011) 
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Chronology 

• Thursday, July 28, 2011: 
– Oracle released JDK 7 to public 

– Package was identical to release candidate (Windows 

EXE signature dated June 27, 2011) 

 

• Apache Lucene PMC decided to warn 

users on web page and 

announce@apache.org mailing list 
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Chronology: 

Friday, July 29, 2011  
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Further analysis the week after 
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THE PORTER STEMMER 

SIGSEGV BUG 

Java 7 Crashes Eclipse… 
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What’s wrong with these methods? 
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Conclusion: Porter Stemmer Bug 

• Less serious bug as your virtual machine 

simply crashes. You won’t use it! 

• Oracle made bug report “serious”, as this 

affects their software, reproducible to 

everyone. 

• Can be prevented by JVM option: 
-XX:-UseLoopPredicate 
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THE VINT BUG 

Loop Unwinding 
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What’s wrong with this method? 

15 



What’s wrong with this method? 
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Conclusion: Vint Bug 

• Serious data corruption: Some methods using loops 

silently return wrong results! 

• Bug already existed in Java 6 

– appeared some time after 1.6.0_18, enabled by default 

– is prevented since Lucene 3.1 by manual loop 

unwinding (helps only in Java 6) 

• Cannot easily be reproduced, Oracle assigned 

“medium” bug priority – was never fixed in Java 6. 

• Problems got worse with Java 7, only safe way to 

prevent is to disable loop unwinding completely, but 

that makes Lucene very slow. 
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HOW TO DEBUG HOTSPOT 

PROBLEMS 

Hands-On 
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First… 

• Fetch some beer! 

• Tell your girlfriend that you will not come to 

bed! 

• Forget about Eclipse & Co! We need a 

command line and our source code… 
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Hardcore: 

Debugging without Debugger 

• Open hs_err file and watch for stack trace. 
(if your JVM crashed like in Porter stemmer) 

• Otherwise: disable Hotspot to verify that it’s 

not a logic error! (-Xint / -Xbatch) 

• Start to dig around by adding 
System.out.println, assertions,... 
Please note: You cannot use a debugger!!! 
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Hardcore: 

Debugging without Debugger 

• Open hs_err file and watch for stack trace. 
(if your JVM crashed like in Porter stemmer) 

• Otherwise: disable Hotspot to verify that it’s 

not a logic error! (-Xint / -Xbatch) 

• Start to dig around by adding 
System.out.println, assertions,... 
Please note: You cannot use a debugger!!! 
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Digging… 

• If you found a method that works incorrectly, 

disable Hotspot optimizations for only that one: 
-XX:CompileCommand=exclude,your/package/Class,method 

– If program works now, you found a workaround! 

– But this may not be the root cause - does not help at all! 

 

• Step down the call hierarchy and replace 

exclusion by methods called from this one. 
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Take action! 

Open a bug report at Oracle! 

 

Inform 

hotspot-compiler-dev@openjdk.java.net 

mailing list. 
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TESTING SOFTWARE ON 

VARIOUS JVM VENDORS 

Setting up Jenkins 
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Randomization everywhere 

• Apache Lucene & Solr use randomization while 

testing: 

– Random codec settings 

– Random Lucene directory implementation 

– Random locales, default charsets,… 

– Random indexing data 
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Randomization everywhere 

• Apache Lucene & Solr use randomization while 

testing: 

– Random codec settings 

– Random Lucene directory implementation 

– Random locales, default charsets,… 

– Random indexing data 

• Reproducible: 

– Every test gets an initial random seed 

– Printed on test execution & included in stack traces 
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Missing parts 

• JVM randomization 
– Oracle JDK 6 / 7 

– IBM J9 6 / 7 

– Oracle JRockit 6 
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Missing parts 

• JVM randomization 
– Oracle JDK 6 / 7 
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– Garbage collector 

– Bitness: 32 / 64 bits 

– Server / Client VM 

– Compressed OOPs (ordinary object pointer) 
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Missing parts 

• JVM randomization 
– Oracle JDK 6 / 7 

– IBM J9 6 / 7 

– Oracle JRockit 6 

• JVM settings randomization 
– Garbage collector 

– Bitness: 32 / 64 bits 

– Server / Client VM 

– Compressed OOPs (ordinary object pointer) 

• Platform 
– Linux, Windows, MacOS X, FreeBSD,… 
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Possibilities 

• Define each Jenkins job with a different JVM: 

– Duplicates 

– Hard to maintain 

– Multiplied by additional JVM settings like GC, 

server/client, or OOP size  
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Possibilities 

• Define each Jenkins job with a different JVM: 

– Duplicates 

– Hard to maintain 

– Multiplied by additional JVM settings like GC, 

server/client, or OOP size  

• Make Jenkins server set build / environment 

variables with a (pseudo-)randomization script: 

– $JAVA_HOME → passed to Apache Ant 

– $TEST_JVM_ARGS → passed to test runner 
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Plugins needed 

• Environment Injector Plugin 

– Executes Groovy script to do the actual work 

– Sets some build environment variables: 
$JAVA_HOME, $TEST_JVM_ARGS, $JAVA_DESC 
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Plugins needed 

• Environment Injector Plugin 

– Executes Groovy script to do the actual work 

– Sets some build environment variables: 
$JAVA_HOME, $TEST_JVM_ARGS, $JAVA_DESC 

 

• Jenkins Description Setter Plugin / Jenkins Email 

Extension Plugin 

– Add JVM details / settings to build description and e-mails 
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Global Jenkins settings 

• Extra JDK config in Jenkins (called “random”): 

– pointing to dummy directory (we can use the base 

directory containing all our JDKs) 

– Assigned to every job that needs a randomly choosen 

virtual machine 
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The warning displayed by Jenkins doesn’t matter! 



Job Config 

• Standard free style build with plugins activated 

– Calls Groovy script file with main logic (sets 
$JAVA_HOME randomly,…) 

– List of JVM options as a „config file“ 

– Job‘s JDK version set to „random“ 

– Apache Ant configuration automatically gets 
$JAVA_HOME and test runner gets extra options via 

build properties 
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Job Config 
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– Calls Groovy script file with main logic (sets 
$JAVA_HOME randomly,…) 

– List of JVM options as a „config file“ 

– Job‘s JDK version set to „random“ 

– Apache Ant configuration automatically gets 
$JAVA_HOME and test runner gets extra options via 

build properties 

• Should work with Maven builds, too! 
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BUGS FOUND 

Results 
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Oracle (Hotspot) JVM 

• Various issues with JIT compilation around all 

OpenJDK / Oracle JDK versions: 

– Miscompiled loops 

– Segmentation faults 

– System.nanotime() brokenness on MacOSX 

– Double free() 

• Lucene bugs with memory allocations if 

compressed oops are disabled on 64bit JVMs 

– happens only with large heaps > 32 GB 
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Java 8 prereleases 

• G1 garbage collector deadlock due to marking stack 

overflow (fixed) 

• Compile failures with –source 1.7 related to default 

interface methods (“isAnnotationPresent”) (fixed) 

• Javadoc bugs 

– new doclint feature did not work (fixed) 

– doc-files folders were not copied (fixed) 
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Java 8 prereleases 

• G1 garbage collector deadlock due to marking stack 

overflow (fixed) 

• Compile failures with –source 1.7 related to default 

interface methods (“isAnnotationPresent”) (fixed) 

• Javadoc bugs 

– new doclint feature did not work (fixed) 

– doc-files folders were not copied (fixed) 

 

• Solr test bugs with cool new Nashorn Javascript engine 

(fixed in Solr tests) 
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Oracle JRockit 
• TestPostingsOffsets#testBackwardsOffsets 

fails in assertion in core Lucene code 

– JVM “ignores” an if-statement 

– IndexWriter later hits assertion 

• No fix available by Oracle 

– Impossible to open a bug report without support contract! 

– JRockit seems unsupported 

– No Java 7 version available anymore => discontinued 

• Workaround: -XnoOpt 

– Slowdown => better use supported Oracle Java 7 
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– JVM “ignores” an if-statement 

– IndexWriter later hits assertion 

• No fix available by Oracle 

– Impossible to open a bug report without support contract! 

– JRockit seems unsupported 

– No Java 7 version available anymore => discontinued 

• Workaround: -XnoOpt 

– Slowdown => better use supported Oracle Java 7 
 

Don’t use JRockit or WebLogic App Server 
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IBM J9 
• GrowableWriter#ensureCapacity() fails in assertion in 

core Lucene code 

– FST#pack() passes wrong argument 

• Cause completely unknown! 

• Hard to debug 

– Happens with JIT, AOT and without any optimizer 

– Only happens if test is executed in whole test suite 

• Workaround: 
-Xjit:exclude={org/apache/lucene/util/fst/FST.pack(IIF)Lorg/apache/lucene/util/fst/FST;} 
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IBM J9 
• GrowableWriter#ensureCapacity() fails in assertion in 

core Lucene code 

– FST#pack() passes wrong argument 

• Cause completely unknown! 

• Hard to debug 

– Happens with JIT, AOT and without any optimizer 

– Only happens if test is executed in whole test suite 

• Workaround: 
-Xjit:exclude={org/apache/lucene/util/fst/FST.pack(IIF)Lorg/apache/lucene/util/fst/FST;} 

 

Don’t use IBM J9 

(Warning: Installed on SUSE Enterprise Linux by default) 
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How about OpenJDK? 

• Version numbers are inconsistent to official Oracle Java! 

• Ubuntu 12 still installs OpenJDK 7b147, but patched! 

• OpenJDK 6 is very different to Oracle JDK 6: 

– Forked from early Java 7! 

– Not all patches applied: e.g., ReferenceQueue#poll() does not 

use double checked locking 
 

                       

                                                           

                          
 

                     

40 



How about OpenJDK? 

• Version numbers are inconsistent to official Oracle Java! 

• Ubuntu 12 still installs OpenJDK 7b147, but patched! 

• OpenJDK 6 is very different to Oracle JDK 6: 

– Forked from early Java 7! 

– Not all patches applied: e.g., ReferenceQueue#poll() does not 

use double checked locking 
 

You may use OpenJDK 7 

(if you understand version numbers and their relation to 

Oracle’s update packages) 
 

                     

40 



How about OpenJDK? 

• Version numbers are inconsistent to official Oracle Java! 

• Ubuntu 12 still installs OpenJDK 7b147, but patched! 

• OpenJDK 6 is very different to Oracle JDK 6: 

– Forked from early Java 7! 

– Not all patches applied: e.g., ReferenceQueue#poll() does not 

use double checked locking 
 

You may use OpenJDK 7 

(if you understand version numbers and their relation to 

Oracle’s update packages) 
 

Don’t use OpenJDK 6 

 

40 

//upload.wikimedia.org/wikipedia/commons/2/24/Warning_icon.svg
//upload.wikimedia.org/wikipedia/commons/2/24/Warning_icon.svg


41 

Inform yourself about further bugs: 
http://wiki.apache.org/lucene-java/JavaBugs 
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